So haben wir getestet

Simulation

Wir haben simuliert, wie sich ein breit gestreuter Euro­land-Staats­anleihen-ETF (börsen­gehandelter Fonds) über einen 20-Jahres­zeitraum in verschiedenen Zins­szenarien entwickeln würde.

Den Euro­land-Staats­anleihen-ETF stellten wir näherungs­weise durch ein gemischtes Portfolio aus einem deutschen und einem italienischen Staats­anleihen-ETF dar, das Mischungs­verhältnis liegt bei 57:43. Wir ermitteln die Mischungs­verhältnis so, dass die durch­schnitt­liche Effektiv­verzinsung für ein Portfolio aus deutschen und italienischen Anleihen der Effektiv­verzinsung des gemischten Euro­land-Indexes von iBoxx entspricht.

Zins­szenarien

Wir haben fünf verschiedene Szenarien ausgehend vom aktuellen Niveau untersucht (Stand: 31. Januar 2021). Einmal ließen wir die Zinsen konstant, einmal senkten wir sie jähr­lich um 0,2 Prozent­punkte (fallende Zinsen), einmal erhöhten wir sie jähr­lich um 0,2 Prozent­punkte (lang­sam steigende Zinsen) und einmal erhöhten wir sie nur inner­halb des ersten Jahres um 1 Prozent­punkt (plötzlich steigende Zinsen). In einem weiteren Szenario ließen wir die Zinsen der deutschen Staats­anleihen konstant und rechneten mit plötzlich steigenden Zinsen bei italienischen Staats­anleihen.

Anleihenportfolio

Jeder der beiden Länder-ETF bestand aus verschiedenen Anleihen mit Lauf­zeiten von 1 bis 30 Jahren. Am Ende eines jeden Jahres wurden alte Anleihen verkauft und neue gekauft, so dass die Lauf­zeiten­struktur ausgehend von der aktuellen Verteilung konstant blieb. Für die Simulation des Kaufs und Verkaufs der Anleihen verwendeten wir Anleihen­preise, die wir aus den gemäß der Szenarien projizierten länderspezi­fischen Zinsstruktur­kurven und aus den Kupons ableiteten.

Kupons

Bei der Ermitt­lung der Kupon­struktur für alle Jahre gingen wir wie folgt vor: Wir bestimmten zunächst die Kupons neuer Anleihen pro Lauf­zeit und Jahr. Die Kupons neuer Anleihen entsprachen der Effektiv­verzinsung mal dem Nenn­wert, mindestens aber Null. Den Nenn­wert setzten wir für alle Anleihen auf 100.

Da der Anleihen-ETF auch aus alten Anleihen besteht, bestimmten wir die Kupons als eine Mischung der Kupons aus neuen und alten Anleihen. Wir starteten im ersten Jahr mit den aktuellen Kupons pro Lauf­zeit, Quelle iBoxx.

Für jedes folgende Jahr t ergab sich der Kupon für eine bestimmte Lauf­zeit n als Mischung der Kupons neuer und alter Anleihen im Verhältnis w: Kupon(t,n)=(1−w)*Kupon(t−1,n+1)+w*KuponNeu(t,n). Ausnahme war der Kupon einer Anleihe der längsten Lauf­zeit; dieser entsprach immer komplett dem Kupon einer neuen Anleihe: Kupon(t,30)=KuponNeu(t,30).

Den Anteil neuer Anleihen an der Staats­verschuldung setzten wir für beide Länder auf 10 Prozent (w=0,1). Das entsprach ungefähr dem Anteil der Anleihen mit zweijäh­riger Rest­lauf­zeit in den Indizes, also dem Anteil, der jedes Jahr aus dem Index heraus­fällt.

Preisberechnung

Für jede Anleihe berechneten wir zwei Preise, zu Beginn einer Periode einen Kauf­preis und zum Ende einer Periode einen Verkaufs­preis. Der Preis ergab sich durch Abzinsung des Zahlungs­stroms einer Anleihe (Kupon und Rück­zahlung des Nenn­werts zum Ende der Rest­lauf­zeit) mit der passenden Zinsstruktur­kurve.

Kosten

Wir berück­sichtigten zusätzlich einen ETF-typischen Rendite­abschlag von 0,2 Prozent pro Jahr.

Jetzt freischalten

Test Rentenfonds 16.03.2021
1,50 €
Sie erhalten den kompletten Artikel.

Wie möchten Sie bezahlen?

  • Unser Tipp
    test.de-Flatrate

    Freier Zugriff auf alle Testergebnisse und Online-Artikel für 7,90 € pro Monat oder 54,90 € im Jahr. Abonnenten von test oder Finanztest zahlen die Hälfte.

    Flatrate neu erwerben

  • Diesen Artikel per Kreditkarte kaufen
  • Diesen Artikel per PayPal kaufen
  • Diesen Artikel per Handy kaufen
  • Gutschein einlösen
Preise inkl. MwSt.
  • kauft alle Testprodukte anonym im Handel ein,
  • nimmt Dienstleistungen verdeckt in Anspruch,
  • lässt mit wissenschaftlichen Methoden in unabhängigen Instituten testen,
  • ist vollständig anzeigenfrei,
  • erhält nur rund 3 Prozent ihrer Erträge als öffentlichen Zuschuss.

Dieser Artikel ist hilfreich. 61 Nutzer finden das hilfreich.